
International Refereed Journal of Engineering and Science (IRJES)

ISSN (Online) 2319-183X, (Print) 2319-1821

Volume 1, Issue 3 (November 2012), PP.39-45

www.irjes.com

www.irjes.com 39 | Page

Comparative Analysis Of KL And SA Partitioning Algorithms

Implemented On VLSI Circuit Partitioning

S. Gurjot Singh
1
 Prof. J.P.S. Raina.

2
 Prof. Supreet Singh

2

1
AP,RIMT-MAEC MandiGobindgarh

2
BBSBEC, Fatehgarh Sahib

ABSTRACT : Circuit partitioning is the one of the fundamental problems in VLSI design. It appears in

several stages in VLSI design, such as logic design and physical design. Circuit partitioning is generally

formulated as the graph partitioning problem. For this problem, a heuristic proposed by Kernighan and Lin is

the most well-known and widely used one in practical applications. with the passage of time and advancement

of the technological methods. In this paper, the comparison of two partitioning techniques is done based on cut-

set. One, KL and second algorithm is Simulated Annealing algorithm. However, due to recent advances of

semiconductor technologies, a VLSI chip may contain millions of transistors, and hence the size of the problem

of circuit partitioning also becomes very large. Good partitioning techniques can positively influence the

performance and cost of a VLSI product.

The main objective to Partition a circuit into parts is that every component is within a prescribed range and the

of connections among the components is minimized.

The K-L (Kernighan-Lin) algorithm was first suggested in 1970 for bisecting graphs in relation to VLSI layout.

It is an iterative algorithm. Starting from a load balanced initial bisection, it first calculates for each vertex the

gain in the reduction of edge-cut that may result if that vertex is moved from one partition of the graph to the

other. At the each inner iteration, it moves the unlocked vertex which has the highest gain, from the partition in

surplus (that is, the partition with more vertices) to the partition in deficit. This vertex is then locked and the

gains updated. The procedure is repeated even if the highest gain may be negative, until all of the vertices are

locked.

Simulated Annealing algorithm works in a different way. It is a heuristic algorithm which tries to find the for the

global optimization problem of locating a good approximation to the global optimum of a given function in a

large search space. In order to apply the SA method to a specific problem, one must specify the following

parameters: the state space, the energy (goal) function E(), the candidate generator procedure neighbour(), the

acceptance probability function P(), and the annealing schedule temperature() AND initial temperature <init

temp>. These choices can have a significant impact on the method's effectiveness. Unfortunately, there are no

choices of these parameters that will be good for all problems, and there is no general way to find the best

choices for a given problem.

MATLAB software is used for programming and implementation of the algorithms. First, we have chosen

standard net-list files to apply the algorithms. Then, we apply KL algorithm and then, SA Algorithm and draw

the graphs based on minimum cut-set.

I. Introduction
Partitioning is a technique to divide a circuit or system into a collection of smaller parts (components).

It is on the one hand a design task to break a large system into pieces to be implemented on separate interacting

components and on the other hand it serves as an algorithmic method to solve difficult and complex

combinatorial optimization problems as in logic or layout synthesis.

The size of VLSI designs has increased to systems of hundreds of millions of transistors. The complexity of the

circuit has become so high that it is very difficult to design and simulate the whole system without decomposing

it into sets of smaller subsystems. This divide and conquer strategy relies on partitioning to manipulate the

whole system into hierarchical tree structure.

II. K-L ALGORITHM Implementation:
The K-L (Kernighan-Lin) algorithm was first suggested in 1970 for bisecting graphs in relation to

VLSI layout. It is an iterative algorithm. Starting from a load balanced initial bisection, it first calculates for

each vertex the gain in the reduction of edge-cut that may result if that vertex is moved from one partition of the

graph to the other. At each inner iteration, it moves the unlocked vertex which has the highest gain, from the

partition in surplus (that is, the partition with more vertices) to the partition in deficit. This vertex is then locked

Comparative Analysis Of KL And SA Partitioning Algorithms Implemented On VLSI Circuit

www.irjes.com 40 | Page

and the gains updated. The procedure is repeated even if the highest gain may be negative, until all of the

vertices are locked. The last few moves that had negative gains are then undone and the bisection is reverted to

the one with the smallest edge-cut so far in this iteration. This completes the outer one iteration of the K-L

algorithm and the iterative procedure is restarted. Should an outer iteration fail to result in any reductions in the

edge-cut or load imbalance, the algorithm is terminated. The initial bisection is generated randomly and for

large graphs, the final result is very dependent on the initial choice. The K-L algorithm is a local optimization

algorithm, with a limited capability for getting out of local minima by way of allowing moves with negative

gain.

III. Simulated Annealing Algorithm Implementation:
Simulated annealing (SA) is a generic probabilistic, heuristic algorithm for the global optimization

problem of locating a good approximation to the global optimum of a given function in a large search space. It is

often used when the search space is discrete (e.g., all tours that visit a given set of cities). For certain problems,

simulated annealing may be more efficient than exhaustive enumeration — provided that the goal is merely to

find an acceptably good solution in a fixed amount of time, rather than the best possible solution. The name and

inspiration come from annealing in metallurgy, a technique involving heating and controlled cooling of a

material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become

unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through

states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal

energy than the initial one. In order to apply the SA method to a specific problem, one must specify the

following parameters: the state space, the energy (goal) function E(), the candidate generator procedure

neighbour(), the acceptance probability function P(), and the annealing schedule temperature() AND initial

temperature <init temp>. These choices can have a significant impact on the method's effectiveness.

Unfortunately, there are no choices of these parameters that will be good for all problems, and there is no

general way to find the best choices for a given problem.

Our Objective:

Any Partitioning problem can be expressed more naturally in graph theoretic terms. A hyper-graph G = (V, E)

representing a partition problem can be described as follows.

Let V = {V1, V2, …., Vn} be a set of vertices and E = {e1,e2,…,em} be a set of hyper-edges, then

 Each vertex represents a component.

 There is a hyper-edge joining the vertices whenever the component corresponding to these vertices are

to be connected

Thus each hyper-edge is the subset of vertex set

 ei  V, i = 1, 2, …, m

In other words, we can say that each net is represented by a hyper-edge.

The partitioning problem is to partition set of vertices (or components) V into V1, V2, …, Vk such that

 Vi  Vj =  i j

 i=1Vi = V

Our Objective of the partitioning problem is

 to partition the circuit in such a way that cut size is minimized.

 Cut Size = is minimized.

Input: A weighted graph G = (V, E) with

 Vertex set V. (|V| = 2n)

 Edge Set E. (|E| = e)

 Cost c (A, B) for each edge {A, B} in E.

Output: 2 partitions X & Y such that

)(
1 1

jic
k

i

k

j

ij 
 

Comparative Analysis Of KL And SA Partitioning Algorithms Implemented On VLSI Circuit

www.irjes.com 41 | Page

 Total cost of edges ―crossing‖ the partition is minimized such that each partition has n vertices

with some tolerances.

IV. Results and Discussions:
From many of the standard VLSI Netlist circuits, 15 net-list files are chosen at random and studied by

applying the KL and SA partitioning algorithms.

The different standard VLSI Net-list files are chosen, whose nodes, i.e. circuit elements vary from 10 to 200,

also with different nets. MATLAB program is made, that implements the KL partitioning algorithm. the

interfacing matrix created by the MATLAB by reading the Netlist circuit file is given as an input to this program

and results are obtained in the form of two partitions and cut-set. The following table is drawn based on cut-set

before and after implementing the KL algorithm.

Table 5.1 KL algorithm implementation results on 15 selected VLSI net-list files

Sr. No. File Name No of

Nodes

No. of

Nets

Initial Cut-set

(Before KL

Algorithm

implementation)

No of

iterations

Final Cut-Set

(After KL

Algo)

1. spp_N15_E16_R1_1121.netD 15 16 4 9 3

2. spp_N15_E45_R2_1653.netD 15 45 18 9 13

3. spp_N19_E25_R2_765.netD 19 25 16 11 9

4. spp_N50_E53_R3_926.netD 50 53 17 26 9

5. spp_N55_E54_R4_516.netD 55 54 30 29 8

6. spp_N59_E79_R6_306.netD 59 79 47 31 22

7. spp_N80_E90_R5_339.netD 80 90 18 41 15

8. spp_N87_E91_R5_382.netD 87 91 09 45 05

9. spp_N89_E131_R5_353.netD 89 131 51 46 21

10. spp_N105_E109_R5_376.netD 105 109 10 54 5

11. spp_N140_E162_R11_123.netD 140 162 67 71 42

12. spp_N149_E186_R10_164.netD 149 186 47 76 17

13. spp_N170_E184_R6_132.netD 170 184 47 86 13

14. spp_N190_E194_R11_165.netD 190 194 08 96 6

15. spp_N198_E338_R12_101.netD 198 338 100 100 48

Depending upon the circuit configuration and the no of nets in the given VLSI NET circuit, the results or

optimization is better in the circuits with the larger number of nodes. Also, it takes more time and iterations to

execute the circuits with the larger number of nodes.

Comparative Analysis Of KL And SA Partitioning Algorithms Implemented On VLSI Circuit

www.irjes.com 42 | Page

Figure 5.3 showing the cut-set before and after KL Algorithm implementation

5.3 SA Algorithm Implementation Results

 In this section, Simulated Annealing Algorithm is applied to the 15 randomly selected VLSI Netlist

standard circuits. Since SA algorithm is heuristic algorithm, therefore, its parameters need to be defined before

implementation and partitions may also change because of random nature of the applied algorithm.

The SA Algorithm is applied by fixing the following parameters for all the NET- files.

initial_temperature=1000; % Initial temperature to start with

cooling_rate=0.3;

threshold=700; % defines the number of iterations

 no_of_nodes_to_swap=8;

 t=2; % tolerance

Table 5.2 SA algorithm implementation results on 15 selected VLSI net-list files

Sr.

No.

File Name No of

Nodes

No. of

Nets

Initial Cut-set (Before SA

Algorithm implementation)

Final Cut-Set

(After SA Algo)

1. spp_N15_E16_R1_1121.netD 15 16 4 05

2. spp_N15_E45_R2_1653.netD 15 45 18 13

3. spp_N19_E25_R2_765.netD 19 25 16 14

4. spp_N50_E53_R3_926.netD 50 53 17 13

5. spp_N55_E54_R4_516.netD 55 54 30 22

6. spp_N59_E79_R6_306.netD 59 79 47 23

7. spp_N80_E90_R5_339.netD 80 90 18 28

Comparative Analysis Of KL And SA Partitioning Algorithms Implemented On VLSI Circuit

www.irjes.com 43 | Page

8. spp_N87_E91_R5_382.netD 87 91 09 21

9. spp_N89_E131_R5_353.netD 89 131 51 30

10. spp_N105_E109_R5_376.netD 105 109 10 19

11. spp_N140_E162_R11_123.netD 140 162 67 46

12. spp_N149_E186_R10_164.netD 149 186 47 31

13. spp_N170_E184_R6_132.netD 170 184 47 40

14. spp_N190_E194_R11_165.netD 190 194 08 50

15. spp_N198_E338_R12_101.netD 198 338 100 92

As observed from the results, SA algorithm is showing better results only in certain cases or circuits. Otherwise,

cut-set becomes larger than the previous cut-set taken. This is because the parameters taken are constant for all

the 15 VLSI NET circuits. But, the results may be different and may be better if different parameters are

selected for the different circuit configurations. As for example, if the tolerance level and no of nodes to swap

parameters are increased for the large nodes circuit, it may give the better results.

Figure 5.4 showing the cut-set before and after SA Algorithm implementation

Comparison of KL and SA Partitioning Algorithm

 In this section, the results of KL and SA Algorithm are compared. KL and SA algorithm results are

tabulated and graph is drawn for the both Algorithms and same VLSI Net-list files.

Comparative Analysis Of KL And SA Partitioning Algorithms Implemented On VLSI Circuit

www.irjes.com 44 | Page

Table 5.3 showing comparison of KL and SA Algorithm implementation results

Sr.

No.

File Name No of

Nodes

No. of

Nets

Final Cut-Set (After KL

Algo)

Final Cut-Set (After

SA Algo)

1. spp_N15_E16_R1_1121.netD 15 16 3 05

2. spp_N15_E45_R2_1653.netD 15 45 13 13

3. spp_N19_E25_R2_765.netD 19 25 9 14

4. spp_N50_E53_R3_926.netD 50 53 9 13

5. spp_N55_E54_R4_516.netD 55 54 8 22

6. spp_N59_E79_R6_306.netD 59 79 22 23

7. spp_N80_E90_R5_339.netD 80 90 15 28

8. spp_N87_E91_R5_382.netD 87 91 05 21

9. spp_N89_E131_R5_353.netD 89 131 21 30

10. spp_N105_E109_R5_376.netD 105 109 5 19

11. spp_N140_E162_R11_123.netD 140 162 42 46

12. spp_N149_E186_R10_164.netD 149 186 17 31

13. spp_N170_E184_R6_132.netD 170 184 13 40

14. spp_N190_E194_R11_165.netD 190 194 6 50

15. spp_N198_E338_R12_101.netD 198 338 48 92

Figure 5.5 showing the results of comparison of KL and SA Algorithm

Comparative Analysis Of KL And SA Partitioning Algorithms Implemented On VLSI Circuit

www.irjes.com 45 | Page

References
[1.] Kernighan and Lin, (Feb, 1970) ―An efficient heuristic procedure for partitioning graphs,‖ The Bell System Technical Journal,

vol. 49, no. 2, 291-297 pg.

[2.] C. M. Fiduccia and R. M. Mattheyses (1982) – ―A linear time heuristic for improving network partitions‖ In Proceedings of

the 19th Design Automation Conference, pages 175-181.
[3.] Bernhard M. Riess, Konrad Doll, and Frank M. Johannes (1994) ―Partitioning every large circuit using analytical

placement techniques.‖ In Design Automation Conference (DAC), pages 646-651. ACM/IEEE.

[4.] Bernhard M. Riess, Heiko A. Giselbrecht, and Bemd Wurth, (1995) ―A new k-way partitioning approach for multiple types of
FPGAs.‖ In Asia and South Pacific Design Automation Conference (ASP-DAC), IFIP/ACM/IEEE.

[5.] Hirendu Vaishnav and Massoud Pedram. (1995) ―Delay optimal partitioning targeting low power VLSI circuits.‖ In

International Conference on Computer Aided Design (ICCAD), pages 638- 643. IEEE IACM.
[6.] http://www.facweb.iitkgp.ernet.in/~isg/CAD/SLIDES/07-partitioning.pdf

[7.] Kennedy, J. Eberhart, R. (1995), ―Particle Swarm Optimization‖. In: Proceedings IEEE International Conference on Neural

Networks, vol. IV, Perth, Australia, pp. 1942-1948.
[8.] Dirk Behrens, Klaus Harbich, Erich Barke,(1996) ―Hierarchical Partitioning‖ Proceeding of IEEE International Conference

ICCAD.

[9.] T. Bui, C. Heigham, C. Jones, and T. Leighton (1989) ―Improving the performance of the Kernighan-Lin and Simulated
Annealing graph bisection algorithms.‖ In Proceedings of the 26th Design Automation Conference, pages 775-778.

[10.] A. G. Hoffmann (1991) ―Towards optimizing global Min-Cut partitioning.‖ In Proceedings of the 2nd European Design

Automation Conference, pages 167-171. IEEE.
[11.] Kirkpatrick, S., Gelatt, C. and Vechi, M., (May 1983) "Optimization by Simulated

Annealing", Science, 220 (4598), 671-680.

[12.] Krishnamurthy, B., (May 1984) "An Improved Min-Cut Algorithm for Partitioning VLSI ―
Networks", IEEE Trans. Computers, C-33(5), 438-446.

[13.] Crama, Y., and M. Schyns, (1999), "Simulated annealing for complex portfolio selection

problems."
[14.] Hu Xiaohui, A., Eberhart, R., (2002). ―Multi objective optimization using dynamic

neighborhood Particle Swarm Optimization.‖ In: Proceedings of the 2002 Congress on

Evolutionary Computation, vol. 2, May 12-17, pp. 1677-1681

